BTS OPTICIEN LUNETIER

MATHÉMATIQUES

CODDICIT TOO	

Session 2008

Durée: 2 heures Coefficient: 2

Matériel autorisé:

Toutes les calculatrices de poche y compris les calculatrices programmables, alphanumériques ou à écran graphique, à condition que leur fonctionnement soit autonome et qu'il ne soit pas fait usage d'imprimante. (Circulaire N° 99 – 186 du 16/11/1999)

Dès que le sujet vous est remis, assurez-vous qu'il est complet. Le sujet comporte 5 pages numérotées de 1/5 à 5/5. Une feuille de papier millimétré est fournie. Un formulaire de 3 pages est joint au sujet.

BTS OPTICIEN LUNETIER		Session 2008
Mathématiques	Code: OLMAT	Page: 1/5

Exercice 1 (10 points)

Partie A

On considère l'équation différentielle (E) : y'-y=-t où l'inconnue y désigne une fonction de la variable réelle t définie et dérivable sur \mathbf{R} et y' la fonction dérivée de y.

- 1. Déterminer les solutions définies sur **R** de l'équation différentielle (E_0) : y'-y=0.
- 2. Déterminer les nombres réels a et b pour lesquels la fonction h définie pour tout réel t par h(t) = at + b est une solution particulière de (E).
- 3. En déduire l'ensemble des solutions de l'équation différentielle (E).
- 4. Déterminer la solution de l'équation différentielle (E), dont la représentation graphique dans un repère du plan passe par le point de coordonnées (0 ; 2).

Partie B

Soit g la fonction définie sur l'intervalle [-2;2] par : $g(t) = t + 1 + e^t$.

- 1. Étudier les variations de g sur l'intervalle [-2;2].
- 2. Montrer que l'équation g(t) = 0 admet une solution unique α dans l'intervalle [-2;2]. Donner un encadrement d'amplitude 10^{-2} de α .
- 3. En déduire le signe de g(t) sur l'intervalle [-2;2].

Partie C

Soit f la fonction définie sur $\left[-2;2\right]$ par : $f(t) = \frac{t \cdot e^t}{e^t + 1}$.

- 1. Démontrer que pour tout t de l'intervalle [-2;2]: $f'(t) = \frac{g(t).e^t}{(e^t+1)^2}$.
- 2. En déduire le signe de f'(t) puis le sens de variation de f sur l'intervalle [-2,2].

Partie D

Le plan est rapporté à un repère orthonormal $(O; \vec{i}, \vec{j})$ d'unité graphique 1 cm. Pour dessiner un profil de branche de lunettes, on utilise la courbe \mathcal{C} dont un système d'équations paramétriques est :

$$\begin{cases} x = f(t) = \frac{t \cdot e^t}{e^t + 1} \\ y = g(t) = t + 1 + e^t \end{cases}$$
 où t appartient à l'intervalle $[-2; 2]$.

BTS OPTICIEN LUNETIER	Session 2008	
Mathématiques	Code : OLMAT	Page: 2/5

- 1. A l'aide des résultats des parties B et C, établir un tableau des variations conjointes de f et de g sur [-2;2].
- 2. Déterminer un vecteur directeur de la tangente T_1 à la courbe \mathcal{C} au point M_1 obtenu pour la valeur $t = \alpha$.
- 3. Déterminer un vecteur directeur de la tangente T_2 à la courbe \mathcal{C} au point M_2 obtenu pour la valeur t = 0.
- Reproduire et compléter le tableau de valeurs suivant.
 On prendra -1,28 comme valeur approchée de α.
 Les valeurs seront arrondies au centième.

t	-2	-1,28	0	1	2
f(t)					
g(t)					

5. Placer les points dont les coordonnées ont été calculées à la question précédente, tracer les droites T_1 et T_2 et la courbe C.

BTS OPTICIEN LUNETIER		Session 2008
Mathématiques	Code: OLMAT	Page: 3/5

Exercice 2 (10 points)

Les parties A et B sont indépendantes. Les résultats sont à arrondir au centième.

Au cours d'une année, le service ophtalmologie d'un centre hospitalier a examiné 5000 patients. Pour chaque patient, une fiche a été remplie sur laquelle sont indiqués l'âge de la personne et le diagnostic posé.

Partie A

Le tableau suivant donne une répartition des sujets en classes d'âge.

Classe d'âge (ans)	[10;20[[20;30[[30;40[[40;50[[50;60[[60;70[[70;80[[80;90[
Effectif n_i	400	600	750	1000	800	650	450	350

- 1. On prélève une fiche au hasard dans le fichier. On note A et B les événements suivants :
 - A : la fiche prélevée est celle d'un sujet dont l'âge est strictement inférieur à 40 ans.
 - B: la fiche prélevée est celle d'un sujet dont l'âge est supérieur ou égal à 20 ans.
 - a) Calculer la probabilité de chacun des événements A, B et A o B.
 - b) Calculer la probabilité que A soit réalisé sachant que B est réalisé.
- 2. On prélève au hasard et avec remise 40 fiches dans le fichier. Soit X la variable aléatoire qui associe à chaque prélèvement de 40 fiches le nombre de fiches correspondant à des sujets dont l'âge est supérieur ou égal à 80 ans.
 - a) Justifier que la variable X suit une loi binomiale dont on précisera les paramètres.
 - b) Calculer l'espérance mathématique et l'écart type de X.
 - c) Calculer la probabilité de l'événement : (X = 3).
- 3. On considère que la loi suivie par X peut être approchée par une loi de Poisson.
 - a) Calculer le paramètre λ de cette loi de Poisson.
 - b) On désigne par Y une variable aléatoire suivant la loi de Poisson de paramètre λ . Calculer la probabilité de l'événement : (Y = 3).

BTS OPTICIEN LUNETIER	Session 2008	
Mathématiques	Code : OLMAT	Page: 4/5

<u>Partie B</u>

2. .

Parmi les pathologies rencontrées chez les 5000 patients figure l'aniséïconie¹. On considère un échantillon de 60 fiches prélevées au hasard dans le fichier des patients. Le nombre de fiches du fichier est assez important pour qu'on puisse assimiler ce tirage à un tirage avec remise.

On constate que 15 fiches de cet échantillon signalent une aniséïconie.

- 1. Donner une estimation ponctuelle de la fréquence inconnue p des fiches du fichier qui signalent une aniséïconie.
- 2. Soit F la variable aléatoire qui, à tout échantillon de 60 fiches prélevées au hasard et avec remise dans le fichier, associe la fréquence des fiches qui signalent une aniseïconie. On admet que F suit la loi normale de moyenne p et d'écart type $\sqrt{\frac{p(1-p)}{60}}$, où p désigne la fréquence inconnue des fiches du fichier qui signalent une aniséïconie. Déterminer un intervalle de confiance de la fréquence p au seuil de confiance 95%.

BTS OPTICIEN LUNETIER

Mathématiques

Code : OLMAT

Session 2008

Page : 5/5

L'aniséïconie se définit comme la perception d'images différentes en taille et/ou en forme par les deux yeux fixant un même objet.

FORMULAIRE DE MATHEMATIQUES

BTS OPTICIEN-LUNETIER

1. RELATIONS FONCTIONNELLES

$$\ln(ab) = \ln a + \ln b$$
, où $a > 0$ et $b > 0$
 $\exp(a + b) = \exp a \times \exp b$

2. CALCUL DIFFERENTIEL ET INTEGRAL

a) Limites usuelles

Comportement à l'infini

$$\lim_{t\to +\infty} \ln t = +\infty ;$$

$$\lim_{t\to +\infty} e^t = +\infty ;$$

Si
$$\alpha > 0$$
, $\lim_{t \to +\infty} t^{\alpha} = +\infty$; si $\alpha < 0$, $\lim_{t \to +\infty} t^{\alpha} = 0$

Comportement à l'origine

$$\lim_{t\to\infty} \ln t = -\infty$$

Si
$$\alpha > 0$$
, $\lim_{t \to 0} t^{\alpha} = 0$; si $\alpha < 0$, $\lim_{t \to 0} t^{\alpha} = +\infty$

Si
$$\alpha > 0$$
, $\lim_{t\to 0} t^{\alpha} \ln t = 0$.

Croissances comparées à l'infini

Si
$$\alpha > 0$$
, $\lim_{t \to +\infty} \frac{e^t}{t^{\alpha}} = +\infty$

Si
$$\alpha > 0$$
, $\lim_{t \to +\infty} \frac{\ln t}{t^{\alpha}} = 0$

b) Dérivées et primitives

Fonetions usuelles

f(t)	f'(t)	f(t)	f'(t)
ln t e ^t	$\frac{1}{t}$ e^t	tan t	$\frac{1}{\cos^2 t} = 1 + \tan^2 t$
$t^{\alpha} \ (\alpha \in \mathbb{C})$	$\alpha t^{\alpha-1}$	Arc sin t	$\frac{1}{\sqrt{1-t^2}}$
sin t	cos <i>t</i> — sin <i>t</i>	Arc tan t	$\frac{1}{1+t^2}$

Opérations

$$(u+v)'=u'+v'$$

$$(ku)' = ku'$$

$$(uv)' = u'v + uv'$$

$$\left(\frac{1}{u}\right)' = -\frac{u'}{u^2}$$

$$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$$

$$(v \circ u)' = (v' \circ u)u'$$

$$(e^u)' = e^u u'$$

$$(v \circ u)' = (v' \circ u)u'$$

 $(e^u)' = e^u u'$
 $(\ln u)' = \frac{u'}{u}, u \text{ à valeurs strictement positives}$

$$(u^{\alpha})' = \alpha u^{\alpha-1} u'$$

c) Calcul intégral

Formulaire de mathématiques

Valeur moyenne de f sur [a, b]:

$$\frac{1}{b-a}\int_{a}^{b}f(t)\,\mathrm{d}t$$

Intégration par parties :

$$\int_{a}^{b} u(t) v'(t) dt = \left[u(t)v(t) \right]_{a}^{b} - \int_{a}^{b} u'(t) v(t) dt$$

d) Développements limités

$$\sin t = t - \frac{t^3}{3!} + \frac{t^5}{5!} + \dots + (-1)^p \frac{t^{2p+1}}{(2p+1)!} + t^{2p+1} \varepsilon (t) \qquad \cos t = 1 - \frac{t^2}{2!} + \frac{t^4}{4!} + \dots + (-1)^p \frac{t^{2p}}{(2p)!} + t^{2p} \varepsilon (t)$$

e) Équations différentielles

Équations	Solutions sur un intervalle I
a(t)x'+b(t)x=0	$f(t) = ke^{-G(t)}$ où G est une primitive de $t \mapsto \frac{b(t)}{a(t)}$

3. PROBABILITES

a) Loi binomiale
$$P(X = k) = C_n^k p^k q^{n-k}$$
 où $C_n^k = \frac{n!}{k!(n-k)!}$; $E(X) = np$; $\sigma(X) = \sqrt{npq}$

b) Loi de Poisson

$$P(X=k) = \frac{e^{-\lambda} \lambda^k}{k!}$$

$$E(X) = \lambda$$

$$V(X) = \lambda$$

$$V(X) = \lambda$$

	0,2	0,3	0,4	0,5	0,6
0	0,8187	0,7408	0,6703	0,6065	0,5488
1	0,1ഒ7	0,2222	0,2681	0,3033	0,3293
2	0,0164	0,0333	0,0536	0,0758	0,0988
3	0,0011	0,0033	0,0072	0,0126	0,0198
4 /	0,000	0,0003	0,0007	0,0016	0,9030
5		0,0000	0,0001	0,0002	0,0003
6			0,0000	0,0000	0,9000

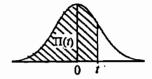
									0,5000	9,0000	0,5000
*	1	1.5	2	3	4	5	6	7	8	9	10
0	0.368	0.223	0.135	0.050	0.018	0.007	0.002	0.001	0.000	0.000	0.000
1	0.368	0.335	0.271	0.149	0.073	0.034	0.015	0.006	0.003	0.001	6.000
2	0.184	0.251	0.271	0.224	0.147	0.084	0.045	0.022	0.011	0.005	0.002
3	0.061	0.126	0.180	0.224	0.195	0.140	0.089	0.052	0.029	0.015	800.0
4	0.015	0.047	0.090	0.168	0.195	0.176	0.134	0.091	0.057	0.034	0.019
5	0.003	0.014	0.036	0.101	0.156	0.176	0.161	0.128	0.092	0.061	0.038
6	0.001	0.004	0.012	0.050	0.104	0.146	0.161	0.149	0.122	9.091	0.063
7	0.000	0.001	0.003	0.022	0.060	0.104	0.138	0.149	0.140	6.117	0.090
8		0.000	0.001	0.008	0.030	0.065	0.103	0.130	0.140	0.132	0.113
9			0.000	0.003	0.013	0.036	0.069	0.101	0.124	0.132	0.125
10				0.001	0.005	0.018	0.041	0.071	0.099	6.119	0.125
11				0.000	0.002	0.008	0.023	0.045	9.072	0.097	0.114
12					0.001	0.003	0.011	0.026	0.048	0.073	0.095
13					0.000	0.001	0.005	0.014	0.030	0.050	0.073
14						0.000	0.002	0.007	0.017	0.032	0.052
15					ŀ		0.001	0.003	0.009	0.019	0.035
16							0.000	0.001	0.005	0.011	0.022
17								0.001	0.002	0.006	0.013
18								0.000	0.001	0.003	9.007
19									0.000	0.001	0.094
20										0.001	0.002
21										0.000	0.001
22											0.000

c) Loi normale

La loi normale centrée réduite est caractérisée par la densité de probabilité : $f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$

EXTRAITS DE LA TABLE DE LA FONCTION INTEGRALE DE LA LOI NORMALE CENTREE, REDUITE $\mathcal{N}(0,1)$

$$\Pi(t) = P(T \le t) = \int_{-\infty}^{t} f(x) dx$$



_		0.01	0,02	0.03	0,04	0,05	0.06	0.07	0,08	0.09
0,0	0,00 0,500 D	0,01 0,504 0	0,508 0	0,512 0	0,516 0	0,519 9	0,523 9	0,527 9	0,531 9	0,535 9
0,1	0,539 8	0,543 8	0,547 8	0,551 7	0.555 7	0,559 6	0,563 6	0.567 5	0,571 4	0,575 3
0,2	0,579 3	0,583 2	0,587 1	0,591 0	0,594 8	0,598 7	0,602 6	0,606 4	0,610 3	0,614 1
0,2	0,579 3	0,621 7	0,625 5	0,629 3	0,633 1	0.636 8	0,640 6	0.644 3	0.648 0	0.651 7
0,4	0,6179	0,659 1	0,662 8	0,666 4	0,670 0	0,673 6	0,677 2	0,680 8	0,684 4	0,687 9
I '	0,633 4	0,695 0	0,698 5	0,701 9	0,705 4	0,708 8	0,712 3	0,715 7	0,719 0	0,722 4
0,5	0,725 7	0,729 0	0,698 5	0,701 9	0,738 9	0,742 2	0,712 3	0,748 6	0,751 7	0,754 9
0,6	,	0,729 0	0,732 4	0,733 /	0,738 9	0,742 2	0,776 4	0,779 4	0,731 7	0,785 2
0,7	0,758 0	,	0,764 2	0,7967	0,770 4	0,8023	6,805 1	0,807 8	0,782 3	0,783 2
0,8	0,788 1	0,791 0	,	,		•	0,831 5	0,834 0	0,836 5	0,838 9
0,9	0,815 9	0,818 6	0,821 2	0,823 8	0,825 4	0,828 9	0,2313	0,2340	U,230 3	0,030 9
١			0.8461	0.848 5	0.850 8	0.853 1	0.855 4	0.857 7	0.859 9	0.862 1
1,0	0,841 3	0,843 8	-,	.,	0,872 9	0,853 1	0,835 4	0,8377	0,8399	0,883 0
1,1	0,864 3	0,866 5	0,868 6	0,870 8		,	0,896 2	0,879 0	0,899 7	.,
1,2	0,884 9	0,886 9	0,888 8	0,890 7	0,892 5	0,894 4	1 ""		'	0,901 5
1,3	0,903 2	0,904 9	0,906 6	0,908 2	0,909 9	0,911 5	0,913 1	0,9147	0,9162	0,917 7
1,4	0,919 2	0,920 7	0,922 2	0,923 6	0,925 1	0,926 5	0,927 9	0,929 2	0,930 6	0,931 9
1,5	0,933 2	0,934 5	0,935 7	0,937 0	0,938 2	0,939 4	0,940 6	0,941 8	0,942 9	0,944 1
1,6	0,945 2	0,946 3	0,947 4	0,948 4	0,949 5	0,950 5	0,951 5	0,952 5	0,953 5	0,954 5
1,7	0,955 4	0,956 4	0,957 3	0,958 2	0,959 1	0,959 9	0,960 8	0,961 6	0,962 5	0,963 3
1,8	0,964 1	0,964 9	0,965 6	0,966 4	0,967 1	0,967 8	0,968 6	8,969 3	0,969 9	0,970 6
1,9	0,971 3	0,971 9	0,972 6	0,973 2	0,973 8	0,974 4	0,975 0	0,975 6	0,9761	0,9767
2,0	0,977 2	0,977 9	0,978 3	0,978 8	0,979 3	0,979 8	0,980 3	0,980 8	0,981 2	0,981 7
2,1	0,982 1	0,982 6	0,983 0	0,983 4	0,983 8	0,984 2	0,984 6	0,985 0	6,985 4	0,985 7
2,2	0,986 1	0,986 4	0,986 8	0,987 1	0,987 5	0,9878	0,988 1	0,988 4	0,988 7	0,989 0
2,3	0,989 3	0,989 6	0,989 8	0,990 1	0,990 4	0,990 6	0,990 9	0,991 1	0,991 3	0,991 6
2,4	0,991 8	0,992 0	0,992 2	0,992 5	0,992 7	0,992 9	0,993 1	0,993 2	0,993 4	0,993 6
2,5	0,993 8	0,994 0	0,994 1	0,994 3	0,994 5	0,994 6	0,994 8	0,994 9	0,995 1	0,995 2
2,6	0,995 3	0,995 5	0,995 6	0,995 7	0,995 9	0,996 0	0,996 1	0,996 2	0,996 3	0,996 4
2,7	0,996 5	0,996 6	0,996 7	0,996 8	0,9969	0,9970	0,997 1	0,997 2	0,9973	0,997 4
2,8	0,997 4	0,997 5	0,997 6	0,997 7	0,997 7	0,997 8	0,997 9	0,997 9	0,998 0	0,998 1
2,9	0,998 1	0,998 2	0,998 2	0,998 3	0,998 4	0,998 4	0,998 5	0,998 5	0,998 6	0,998 6

TABLE POUR LES GRANDES VALEURS DE t

t	3,0	3.1	3,2	3,3	3,4	3,5	3,6	3.8	4,0	4,5
ПО	0,998 65	0.999 04	0,999 31	0,999 52	0.999 66	0,999 76	0,999 841	0,999 928	0,999 968	0,999 997

Nota: $\Pi(-t)=1-\Pi(t)$