BTS OPTICIEN LUNETIER

ETUDE TECHNIQUE DES SYSTEMES OPTIQUES - U43

Session 2016

Durée : 2h Coefficient : 3

<u>Jumelles</u>

Dès que le sujet vous est remis, assurez-vous qu'il est complet. Le sujet comporte 5 feuilles A3 numérotées de 0/4 à 4/4.

Feuille 0/4 : Page de garde.

Feuille 1/4 : Mise en situation, schéma optique, caractéristiques techniques, nomenclature.

Feuille 2/4 : Dessin d'ensemble.

Feuille 3/4: Questionnaire.

Feuille 4/4 : Document réponse Recto-Verso à rendre en fin d'épreuve.

Matériel autorisé :

Calculatrice conformément à la circulaire N° 99-186 du 16/11/1999

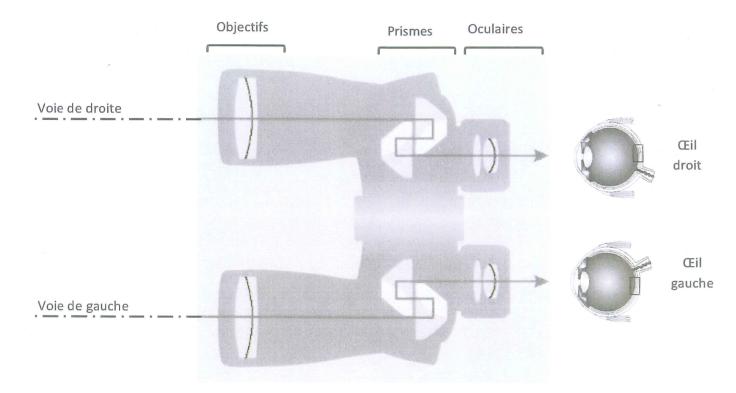
Document à rendre avec la copie :

A3 Recto-Versofeuille 4/4

BTS OPTICIEN LUNETIER		Session 2016
Étude technique des systèmes optiques – U. 43	OLETS	Feuille 0/4
		Page : 1/5

1) Mise en situation:

Des jumelles sont un dispositif optique binoculaire grossissant destiné à l'observation d'objets à distance, constitué de deux lunettes symétriques montées en parallèle.


L'intérêt des jumelles par rapport à une lunette simple est, dans une certaine mesure, de pouvoir conserver la vision stéréoscopique.

Un de vos clients vous demande des conseils concernant les réglages à effectuer pour diminuer les effets de son astigmatisme sur sa vision avec les jumelles.

Le client souhaite aussi être renseigné sur les meilleures conditions d'utilisation des jumelles pour optimiser le champ observable.

2) Description

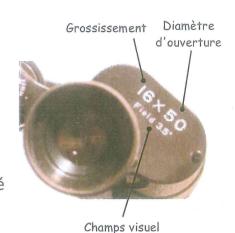
Chaque voie est constituée d'un objectif, d'un bloc-prisme redresseur et d'un oculaire.

Un objectif forme une image d'un l'objet. Un bloc prisme permet de redresser cette image. Un oculaire conjugue cette image sur le remotum de l'œil.

L'utilisateur règle l'écart inter-pupillaire par le déversement des deux corps des jumelles.

L'objet observé peut être à distance variable (de 5m environ à l'infini). Il est donc nécessaire d'effectuer une mise au point sur l'objet afin de le voir net.

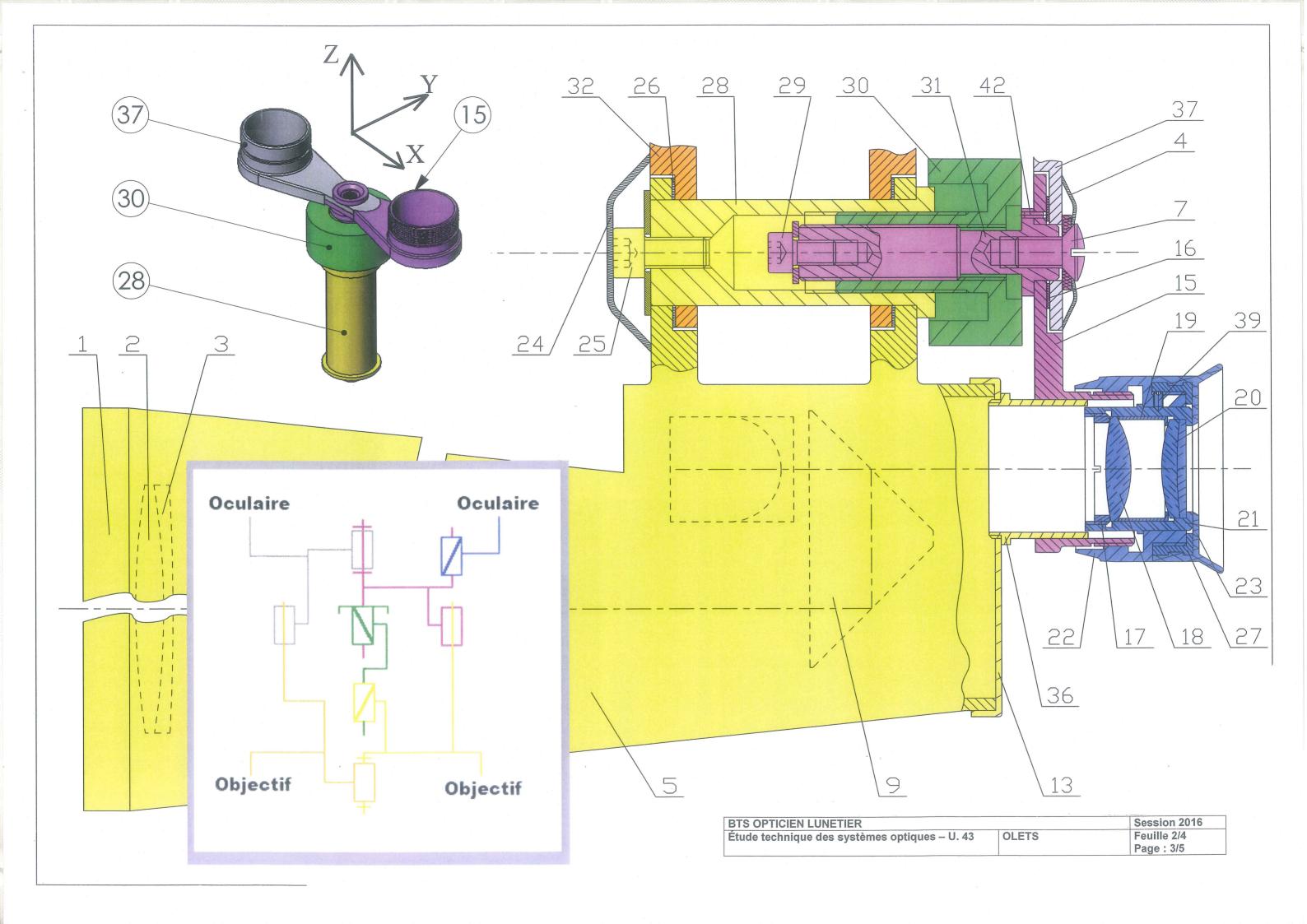
L'utilisateur effectue la mise au point sur l'objet avec l'œil droit. L'action de mise au point créé la translation axiale simultanée des oculaires des deux corps gauche et droit.


BTS OPTICIEN LUNETIER		Session 2016
Étude technique des systèmes optiques – U. 43	OLETS	Feuille 1/4
		Page: 2/5

Le client n'ayant pas forcément la même réfraction axiale principale avec l'œil droit qu'avec l'œil gauche, il est nécessaire d'effectuer une mise au point différente sur l'œil gauche que sur l'œil droit. Ce réglage est appelé "réglage dioptrique".

L'utilisateur met les jumelles à sa vue (réglage dioptrique) sur l'œil gauche par translation axiale de l'oculaire gauche.

3) Principales caractéristiques:


- **Grossissement** : Rapport entre la taille d'un objet observé à l'œil nu et celle d'un objet observé avec des jumelles.
- **Diamètre d'ouverture** : Plus il est grand, plus il y a de lumière recueillie et par conséquent, plus l'image est lumineuse.
- **Champs visuel** : Champ angulaire observé et calculé à partir du centre des objectifs des jumelles, il est donné par le constructeur en degrés.

4) Nomenclature et Dessin d'ensemble : feuille 2/4

22	Bague de réglage
	dioptrique
21	Barillet
20	Doublet oculaire L2
19	Entretoise
18	Lentille d'oculaire L1
17	Contre barillet d'oculaire
16	Rondelle de pont
15	Pont oculaire gauche
13	Couvercle corps gauche
9	Prisme
7	Vis Enjoliveur supérieur
5	Corps gauche
4	Enjoliveur supérieur
3	Lentille d'objectif gauche
2	Lentille d'objectif gauche
1	Enjoliveur objectif gauche

Ergot d'arrêt en rotation
Vis de blocage
Pont oculaire droit
Manchon oculaire
Corps droit
Axe central
Molette centrale
Vis de blocage de l'axe
Conduit de l'axe
Support de bonnette
Rondelle de l'axe
Vis de blocage du conduit de
l'axe
Enjoliveur inférieur
Bonnette

PREAMBULE:

- * Les dimensions et caractéristiques du système ont parfois été sensiblement modifiées afin d'améliorer la lisibilité graphique mais les résultats obtenus sont conformes à la réalité.
- * Les quatre parties (A, B et C) peuvent être traitées indépendamment.

Partie A: Etude du réglage dioptrique (Voie Objectif Jaune - Oculaire Bleu) FEUILLE RECTO.

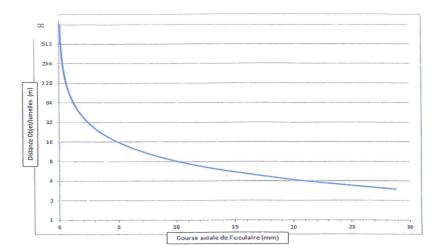
On donne:

- Un oculaire, représenté dans la vue de face et de dessus, composé de deux lentilles minces [L1] de foyers
 F1 et F'1 et [L2] de foyers F2 et F'2. Cet oculaire a un foyer principal objet Foc. Il est réglé pour un observateur emmétrope n'accommodant pas.
- O Un œil gauche astigmate, schématisé par ses plans principaux [Hœil] et [H'œil] confondus. Ses foyers principaux sont (F'90°) et (F90°) pour le méridien principal [90°] et (F'0°) et (F0°) pour le méridien principal [0°]. Sa pupille [Pœil] permet de limiter le faisceau lumineux.
- o La jumelle a été réglée pour l'œil droit emmétrope désaccommodé.

Travail demandé : dans les vues de face et de dessus à l'échelle 2:1

- A1 On donne dans les deux vues une image objective AoBo placée dans le plan focal objet de l'oculaire [Foc]. Compléter la chaîne des images en précisant certaines positions particulières (Infini, F'2, F'1, ...)
- A2 L'image objective AoBo est définie par un vecteur en vue de face et par deux points confondus en vue de dessus. Construire ses conjuguées images par l'oculaire et par l'œil astigmate.
- A3 Tracer la marche du faisceau lumineux à travers le système oculaire/œil issu du point Bo et limité par la pupille de l'œil [Pœil].
- A4 Tracer en vue de gauche la trace du faisceau lumineux issu du point Bo dans le plan de la rétine [Rét].
- A5 L'œil gauche astigmate peut-il voir net avec cette jumelle un objet dans cette configuration ? Justifier votre réponse et proposer une action à réaliser sur la jumelle si ce n'est pas le cas.
- A6 La mise au point a été effectuée pour voir l'image nette avec l'œil droit. Le réglage dioptrique consiste à voir l'image la moins floue possible avec l'œil gauche astigmate.

 Compléter les cadres QA6a et QA6b.
 - a) Sur quel groupe cinématique agit l'utilisateur des jumelles pour effectuer le réglage dioptrique (rose, bleu, vert, ...) ?
 - b) Durant le réglage dioptrique, quels sont les mouvements (Tx, Rx, pas de mouvement, ...) entre les groupes cinématiques définis dans le cadre QA6b ?


Partie B: Etude de la mise au point (Voie Objectif Orange - Oculaire Gris) FEUILLE VERSO.

Le réglage de la mise au point s'effectue en modifiant la distance entre l'objectif et l'oculaire en fonction de la distance entre l'objet à visualiser et les jumelles.

Pour observer un objet relativement proche (à distance fini), il faut éloigner l'oculaire de l'objectif.

B1 Etude de la plage de fonctionnement des jumelles

- c) Sur quelle pièce agit l'utilisateur des jumelles pour modifier la position axiale de l'oculaire (groupe cinématique gris) ? Quel est le mouvement de commande sur cette pièce ?
- d) Quel est alors le mouvement utile de l'oculaire ?
- e) On donne sur le plan d'ensemble le schéma cinématique de ce système. Compléter le tableau QB1e des liaisons cinématiques.
- f) Quel est le nom du système de transformation de mouvement utilisé?
- g) Le constructeur annonce que les jumelles peuvent être utilisées pour visualiser un objet situé entre 4m et l'infini (Plage de fonctionnement). On donne ci-dessous une courbe donnant la course axiale utile de l'oculaire en fonction de la position de l'objet (la position "0" de l'oculaire correspondant à un objet situé à l'infini). Quelle doit-être la course utile de l'oculaire pour voir un objet situé à 4m?

h) Le bouton 30 peut au maximum tourner de 5 tours.

On donne ci-dessous la formule permettant de calculer la course axiale du groupe cinématique rose en fonction de l'angle de rotation du groupe cinématique vert :

 $C = ((P_{28/30} + P_{30/31}) \times \theta)/(2\pi)$

Avec: $P_{28/30}$ = Pas du filetage entre 28 et 30 (= 4mm).

 $P_{30/31}$ = Pas du filetage entre 30 et 31 (= 0,5mm).

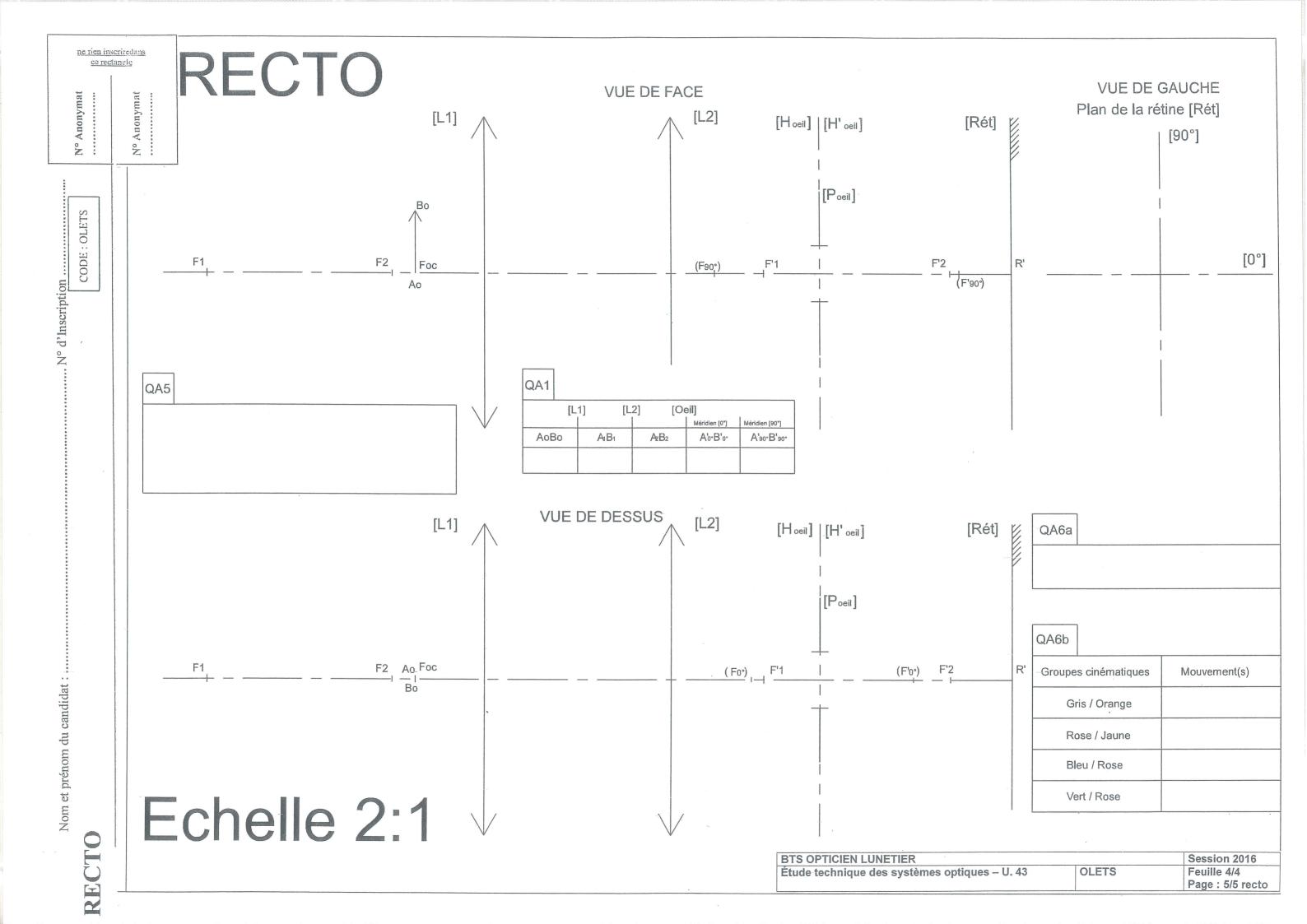
 θ = angle de rotation du groupe cinématique vert (en rad)

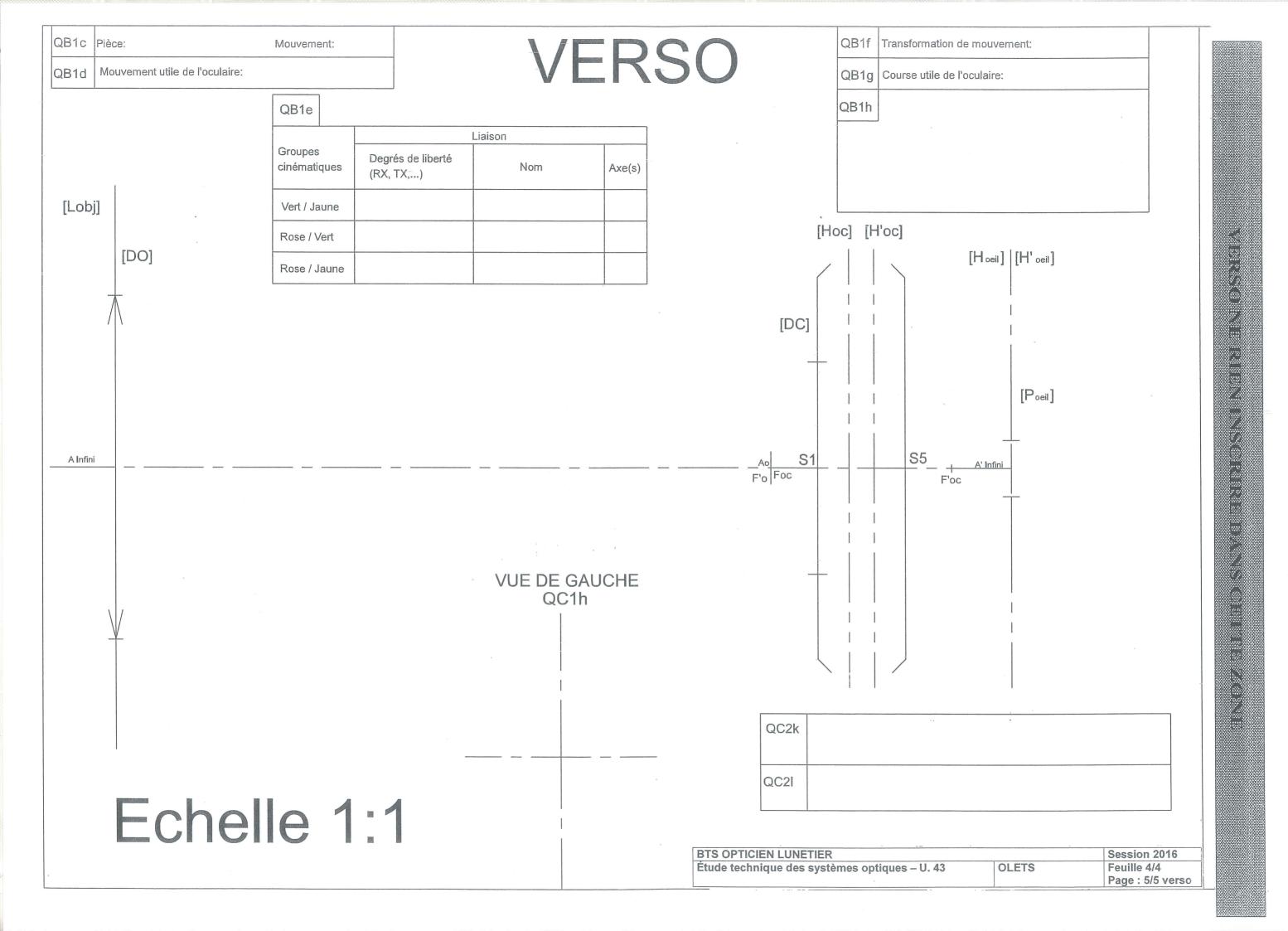
C = course axiale du groupe cinématique rose (en mm)

Calculer le nombre de tour(s) utile(s) de la molette 30 pour satisfaire la course axiale trouvée à la question (g). Le cahier des charges est-il respecté ?

Partie C: Etude des champs FEUILLE VERSO.

La jumelle afocale, est composée :


- o D'un objectif, lentille mince convergente [Lobj] de foyer image F'o. Sa taille joue le rôle de diaphragme d'ouverture [DO].
- o D'un oculaire représenté par ses plans principaux [Hoc] [H'oc] et ses foyers Foc et F'oc. L'encombrement de l'oculaire est caractérisé par les deux dioptres S1 et S5.
- o L'observateur emmétrope n'accommodant pas est schématisé par ses plans principaux [Hœil] [H'œil] et sa pupille [Pœil]. L'objet A observé est à l'infini sur l'axe optique.
- o Les prismes n'interviennent pas dans l'étude optique de la jumelle.


Travail demandé: Echelle 1:1

On désire étudier la taille du champ observable donné par la jumelle seule et avec l'observateur.

- C1 L'étude des champs sans l'observateur se fera dans le plan [Foc] entre l'objectif et l'oculaire.
 - h) Déterminer le demi-champ de pleine lumière AoB_{Lo} et le demi-champ total AoB_{To}. Les reporter en vue de gauche et les coter.
- C2 L'étude des champs avec l'observateur se fera également dans le plan [Foc] entre l'objectif et l'oculaire.
 - i) Déterminer la pupille [P] et la lucarne [L] après avoir conjugué la pupille de l'œil.
 - j) Déterminer les nouveaux demi-champs de pleine lumière AoP_{Lo} et total AoT_o.
 - k) Que pouvez vous conclure en comparant les champs avec ou sans l'observateur.
 - Déterminer graphiquement [Co], conjugué de [Do] à travers l'oculaire. Que peut faire modifier l'observateur pour augmenter son champ de vision avec cette jumelle?

BTS OPTICIEN LUNETIER	OPTICIEN LUNETIER	
Étude technique des systèmes optiques – U. 43	OLETS	Feuille 3/4
		Page: 4/5

